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Data Setup
You have data on two variables, x and y , where at least y
is continuous
You want to characterize the relationship between x and y
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The Setup
Continued

Theoretical Goals
Describe the relationship between x and y
Predict y from x
Decide whether x causes y
The above goals are not mutually exclusive!
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Predicting Kids IQ

Example (Predicting Kids IQ)

The goal is to predict cognitive test scores of three- and
four-year-old children given characteristics of their mothers,
using data from a survey of adult American women and their
children (a subsample from the National Longitudinal Survey of
Youth).
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Predicting Kids IQ
Potential predictors

Two Potential Predictors
One potential predictor of a child’s test score (kid.score) is
the mother’s IQ score (mom.iq). Another potential predictor is
whether or not the mother graduated from high school
(mom.hs). In this case, both (kid.score) and (mom.iq) are
continuous, while the second predictor variable (mom.hs) is
binary.

Questions
Would you expect these two potential predictors mom.hs and
mom.iq to be correlated? Why?
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Predicting Kids IQ
Plotting kid’s IQ vs. mom’s IQ

Least Squares Scatterplot
The plot on the next slide is a standard two-dimensional
scatterplot showing Kid’s IQ vs. Mom’s IQ
We have superimposed the line of best least squares fit on
the data
Least squares linear regression finds the line that minimizes
the sum of squared distances from the points to the line in
the up-down direction
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Fitting the Linear Model with R

The Fixed-Regressor Linear Model
When we fit a straight line to the data, we were fitting a
very simple “linear model”
The model is that y = b1x + b0 + ε, with the ε term having
a normal distribution with mean 0 and variance σ2

e

b1 is the slope of the line and b0 is its y-intercept
We can write the model in matrix “shorthand” in a variety
of ways
One way is to say that y = Xβ + ε

Another way or at the level of the individual observation,
yi = x ′

iβ + εi

Note that in the above notations, y , X and ε have a finite
number of rows, and the scores in X are considered as
fixed constants, not random variables
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Fitting the Linear Model with R
The model

Using the lm function
R has an lm function
You define the linear model using a simple syntax
In the model y = b1x + b0 + ε, y is a linear function of x To
fit this model with kid.score as the y variable and mom.iq
as the x variable, we simply enter the R command shown
on the following slide
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Fitting the Linear Model with R
The R code and output

> lm(kid.score˜mom.iq)

Call:
lm(formula = kid.score ~ mom.iq)

Coefficients:
(Intercept) mom.iq

25.80 0.61

Comment
The intercept of 0.61 and slope of 25.8, taken literally, would
seem to indicate that the child’s IQ is definitely related to the
mom’s IQ, but that mom’s with IQs around 100 have children
with IQs averaging about 87.
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Fitting the Linear Model with R
Saving a fit object

Saving a Fit Object
R is an object oriented language
You save the results of lm computation in fit objects
Fit objects have well-defined ways of responding when you
apply certain functions to them
In the code that follows, we save the linear model fit in a fit
object called fit.1

Then, we apply the summary function to the object, and
get a more detailed output summary
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Fitting the Linear Model with R
summary function code and output

> fit.1 ← lm(kid.score˜mom.iq)
> summary(fit.1)

Call:
lm(formula = kid.score ~ mom.iq)

Residuals:
Min 1Q Median 3Q Max

-56.753 -12.074 2.217 11.710 47.691

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.79978 5.91741 4.36 1.63e-05 ***
mom.iq 0.60997 0.05852 10.42 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.27 on 432 degrees of freedom
Multiple R-squared: 0.201, Adjusted R-squared: 0.1991
F-statistic: 108.6 on 1 and 432 DF, p-value: < 2.2e-16
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Interpreting Regression Output

Key Quantities
In the preceding output, we saw the estimates, their
(estimated) standard errors, and their associated
t-statistics, along with the Multiple R2, adjusted R2, and
an overall test statistic
Under the assumptions of the linear model (which are
almost certainly only an approximation), the estimates
divided by their standard errors have a Student-t
distribution with N − k degrees of freedom, where k is the
number of parameters estimated in the linear model (in
this case 2)
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Iterpreting Regression Output

Key Quantities – Continued
Since the parameter estimates have a distribution that is
approximately normal, we can construct an approximate
95% confidence interval by taking the estimate ±2
standard errors
If we take the t distribution assumption seriously, we can
calculate exact 2-sided probability values for the hypothesis
test that a model coefficient is zero.
For example, the coefficient b1 has a value of 0.61, and a
standard error of 0.0585
The t-statistic has a value of 0.61/0.0585 = 10.4
The approximate confidence interval for b1 is 0.61± 0.117
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test that a model coefficient is zero.
For example, the coefficient b1 has a value of 0.61, and a
standard error of 0.0585
The t-statistic has a value of 0.61/0.0585 = 10.4
The approximate confidence interval for b1 is 0.61± 0.117
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Key Quantities – Continued

The multiple R2 value is an estimate of the proportion of
variance accounted for by the model
When N is not sufficiently large or the number of predictors
is large, multiple R2 can be rather positively biased
The “adjusted” or “shrunken” R2 value attempts to
compensate for this, and is an approximation to the known
unbiased estimator
The adjusted R2 does not fully correct the bias in R2, and
of course it does not correct at all for the extreme bias
produced by post hoc selection of predictor(s) from a set of
potential predictor variables
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Fitting the Linear Model with R
Using the display function

The display function
The summary function produces output that is somewhat
cluttered
Often this is more than we need
The display function (provided by Gelman and Hill in the
arm library), pares things down to the essentials
In general, if a coefficient is larger in absolute value than
about two standard errors, it is significantly different from
zero
By taking the coefficient plus or minus two standard errors,
you can get a quick (approximate) 95% confidence interval
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Fitting the Linear Model with R
display function code and output

> fit.1 ← lm(kid.score˜mom.iq)
> display (fit.1)

lm(formula = kid.score ~ mom.iq)
coef.est coef.se

(Intercept) 25.80 5.92
mom.iq 0.61 0.06
---
n = 434, k = 2
residual sd = 18.27, R-Squared = 0.20

Multilevel The Foundation of Regression Analysis



The Classic Bivariate Least Squares Model
Evaluating and Extending the Model

Interpreting the Regression Line
Extending the Model

Basic theoretical orientation

Basic theoretical orientation
When we obtain the best-fitting regression line and try to
evaluate what it means, we first have to consider our basic
theoretical orientation. There are three fundamental
approaches:

Descriptive
Predictive
Counterfactual

Multilevel The Foundation of Regression Analysis



The Classic Bivariate Least Squares Model
Evaluating and Extending the Model

Interpreting the Regression Line
Extending the Model

Basic theoretical orientation

Basic theoretical orientation
When we obtain the best-fitting regression line and try to
evaluate what it means, we first have to consider our basic
theoretical orientation. There are three fundamental
approaches:

Descriptive
Predictive
Counterfactual

Multilevel The Foundation of Regression Analysis



The Classic Bivariate Least Squares Model
Evaluating and Extending the Model

Interpreting the Regression Line
Extending the Model

Basic theoretical orientation

Basic theoretical orientation
When we obtain the best-fitting regression line and try to
evaluate what it means, we first have to consider our basic
theoretical orientation. There are three fundamental
approaches:

Descriptive
Predictive
Counterfactual

Multilevel The Foundation of Regression Analysis



The Classic Bivariate Least Squares Model
Evaluating and Extending the Model

Interpreting the Regression Line
Extending the Model

Basic theoretical orientation

Basic theoretical orientation
When we obtain the best-fitting regression line and try to
evaluate what it means, we first have to consider our basic
theoretical orientation. There are three fundamental
approaches:

Descriptive
Predictive
Counterfactual

Multilevel The Foundation of Regression Analysis



The Classic Bivariate Least Squares Model
Evaluating and Extending the Model

Interpreting the Regression Line
Extending the Model

Interpreting the regression line — 3 approaches
Descriptive

Regression as description
One approach to regression is purely descriptive:

We have a set of data
We wish to describe the relationship between variables in a
way that is mathematically succinct
We concentrate on the data at hand, and resist generalizing
to what might happen in new, as yet unmeasured, data sets
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Interpreting the regression line — 3 approaches
Predictive

Regression as prediction
Regression can be predictive in two senses.

One sense, used by Gelman and Hill, p. 34, is similar to the
descriptive approach described previously. It considers how the
criterion variable changes, on average, between two groups of
scores that differ by 1 on a predictor variable while being
identical on all other predictors. In the kids IQ example, we
could say that, “all other things being equal, children with
moms having IQs of 101 have IQs that are .61 points higher
than children whose moms have IQs of 100”
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Interpreting the regression line — 3 approaches
Predictive

Regression as prediction
Regression can be predictive in two senses.

Another sense, employed frequently in marketing and data
mining, obtains a regression equation in the hope of using it on
new data to predict the criterion value in advance from values
of the predictor that have already been obtained.
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Interpreting the regression line — 3 approaches
Counterfactual

Counterfactual interpretation
The counterfactual or causal interpretation attempts to
analyze how the criterion variable would change if the
predictor variable were changed by one unit
Suppose, for example, we found a linear relationship with a
negative slope b1 between size of classroom and
standardized achievement scores
We might then seek to conclude that decreasing class size
by 1 would increase a child’s achievement score by −b1

units
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Interpreting the regression line — quantitative aspects

Interpreting a regression fit
Key numerical aspects of a simple linear regression analysis
include

The slope
The intercept
How well the line fits the points, i.e., whether the variance
of the errors is large or small, or, alternatively, whether the
correlation coefficient is high in absolute value
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Interpreting the Regression Line – Quantitative Aspects
Regression Slope

Interpreting regression slope
Depending on whether the basic orientation is descriptive,
predictive, or counterfactual, the slope might be interpreted as

The difference in conditional mean on criterion variable y
observed in groups of observations that differ by one unit
on predictor variable x
The difference in average value that will be observed in the
future on y if you select an observation that is currently
one unit higher on x
The amount of change in y you will produce by increasing
x by one unit
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Interpreting regression intercept
Technically, the regression intercept is the average value of
criterion variable y observed for those observational units
with a value of 0 on predictor variable x
Often this interpretation is nonsensical or at least very
awkward

Example
Suppose you examine the relationship between height and
weight for a group of individuals, and plot the linear regression
line with height as the predictor variable x . The intercept
represents the average weight of individuals with heights of zero!
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Extending and Improving the Model

Can the model be improved?
Maybe a simple linear regression doesn’t predict the kids’
IQ scores that well
Perhaps we can do better
There are numerous ways we might proceed
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Extending and Improving the Model
Adding Predictors

Selecting and adding predictors
Perhaps mom’s IQ, by itself, is simply inadequate for
predicting a child’s IQ
In that case, we might consider additional variables in our
data set
But we have to be careful!

Multilevel The Foundation of Regression Analysis



The Classic Bivariate Least Squares Model
Evaluating and Extending the Model

Interpreting the Regression Line
Extending the Model

Extending and Improving the Model
Adding Predictors

Selecting and adding predictors
Perhaps mom’s IQ, by itself, is simply inadequate for
predicting a child’s IQ
In that case, we might consider additional variables in our
data set
But we have to be careful!

Multilevel The Foundation of Regression Analysis



The Classic Bivariate Least Squares Model
Evaluating and Extending the Model

Interpreting the Regression Line
Extending the Model

Extending and Improving the Model
Adding Predictors

Selecting and adding predictors
Perhaps mom’s IQ, by itself, is simply inadequate for
predicting a child’s IQ
In that case, we might consider additional variables in our
data set
But we have to be careful!

Multilevel The Foundation of Regression Analysis



The Classic Bivariate Least Squares Model
Evaluating and Extending the Model

Interpreting the Regression Line
Extending the Model

Extending and Improving the Model
Adding Predictors

Selecting and adding predictors
Perhaps mom’s IQ, by itself, is simply inadequate for
predicting a child’s IQ
In that case, we might consider additional variables in our
data set
But we have to be careful!

Multilevel The Foundation of Regression Analysis



The Classic Bivariate Least Squares Model
Evaluating and Extending the Model

Interpreting the Regression Line
Extending the Model

Extending and Improving the Model
Adding Predictors

Dangers of overfitting
If we have a long list of potential predictors, we could scan
through the list and pick out variables that correlate highly
with the criterion
In fact, many standard regression programs (such as the
module in SPSS) will do this for us automatically
But this can be very dangerous
Why?
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Modeling Interaction

Interaction terms
Once we have more than one predictor, we have an
additional option
We can add interaction terms to our model
Variables interact if the effect of one varies depending on
the value of the other(s)
Interaction effects can be very important in a number of
contexts!
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Linear and nonlinear transforms
In some cases, simply transforming the variables linearly
will make the meaning of the regression line clearer
In other cases, a nonlinear transform may be necessary
For example, when positive data have a huge range and a
non-normal distribution, a log transformation may be very
useful
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Nonlinear Models
An interaction model is nonlinear, but there are many
other kinds of nonlinear models
For example, we might fit the polynomial model
y = b0 + b1x + b2x 2 + b3x 3 + ε

Or, we might fit a piecewise regression model, where
different straight lines are fit to different ranges of predictor
values
Of course, this barely scratches the surface of what is
available
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